

Daniel Cebra June 11, 2012

RHIC/AGS Program Advisory Committee Meeting Brookhaven National Laboratory Slide 1 of 25

The RHIC Beam Energy Scan

- Much progress has been made in understanding the phase diagram of QCD matter. We expect a cross-over at high energy. At lower energy there should be a first order transition.
- Mapping the features of the QCD matter phase diagram is key to our understanding dense matter.
- In 2009 the RHIC PAC approved a series of six energies to search for the turn-off of QGP signatures, the critical point, and evidence of a first order phase transition.

Beam Energy Scan

	Collision Energies (GeV)	5	7.7	11.5	19.6	27	39	62.4
	Chemical Potential (MeV)	550	420	315	205	155	115	72
	Observables	Millions of Events Needed						
QGP	n_{ca} scaling $\pi/K/p/\Lambda$	8.5	6	5	5	4.5	4.5	
	$R_{\rm CP}$ up to $p_{\rm T} \sim 4.5, 5.5, 6.0$				15	33	24	
	Local Parity Violation		4	4	4	4	4	
<u> </u>	v_2 (up to ~ 1.5 GeV/c)	0.3	0.2	0.1	0.1	0.1	0.1	
Order		0.5	0.5	0.5	0.5	0.5	0.5	
1st (
	Azimuthally sensitive HBT	4	4	3.5	3.5	3	3	
P.	PID fluctuations (K/π)	1	1	1	1	1	1	
C.P.	net-proton kurtosis	5	5	5	5	5	5	
	Total Number of <i>Good</i> Events Taken (Millions)	0	4.3	11.7	36	70	130	67

Setting the Scene

Particle Identification

Hadron Spectra

 ϕ , K_s^0 : Levy function fits Λ , Ξ : Boltzmann fits Λ : feed-down corrected

Chemical Equilibrium

Adding the strange particle ratios to the π , K, and p and using different ensembles in the thermal model, we can study the centrality and energy dependence of T and μ_B

The Horn and Other Yields

Turn-off of QGP Signatures

Constituent Quark Scaling – BES Results

scaling by the number of quarks \rightarrow partonic collectivity \rightarrow deconfinement Baryon/meson and high m_t - m_0 indicates NCQ scaling

Particles:

- Baryon/Meson splitting at 11.5 GeV
- •No baryon/meson splitting at 7.7 GeV
- •QGP Signature turned off

Anti-Particles:

- •No baryon/meson splitting at 11.5 GeV
- •QGP Signature turned off

Constituent Quark Scaling – BES Results

- There is a remarkable difference between particles and their anti-particles, especially for the lowest energies in the range.
- Difference between particles and their anti-particle decreases with increasing beam energy.
- Most significant below 19.6 GeV

Possible explanation

- Baryon transport to midrapidity [J. Dunlop et al., PRC 84, 044914 (2011)]
- **Hadronic potential** [J. Xu et al., PRC 85, 041901 (2012)]

Turn-off of QGP Signatures

High p_T suppression has been seen as a clear manifestation of energy loss by

color objects (quarks) in a color medium (QGP) • R_{cp} suppression NOT seen at lower energies! SPS 17.3 GeV (PbPb) → The QGP *signature* is turned off. ○ xº WA98 (0-7%) →Is QGP turned off? RHIC 200 GeV (AuAu) xº PHENIX (0-10%) → Need p+A in this energy range. 1.5 **STAR Preliminary** SPS 7.7GeV Stat. errors only **გ** 11.5GeV Not feed-down corrected 19.6GeV 27GeV 39GeV 62.4GeV 0.5 **5** STAR(2003) 200GeV 20 100 200 N_{part} p_r (GeV/c) Eur.Phys.J. C72 (2012) 1945 (0-5%)/(60-80% Thermal emission from a Perturbative radial expanding source or QCD and parton $p_{-}^{4}(GeV/c)^{5}$ 10 Cronin Effect energy loss

Local Parity Violation – BES Results

The anisotropy attributed to the Chiral Magnetic Effect is gone at 7.7 GeV

Search for 1st Order PhaseTransition

Elliptic Flow – BES Results

A reduction in flow or in the rate of increase in flow could indicate a softening of the equation of state.

- Elliptic Flow is rising rapidly with beam energy at AGS energies
- The rate of increase is reduced above 7.7 GeV for BES energies

Many caveats with this comparison:

- •We need v_2 of indentified particles
- •We need consistent analysis methods between energy ranges
- •Such detailed analyses are not available in the previous published results
- → This rough comparison highlights the need for STAR data below 7.7 GeV

Directed Flow -- BES

B. Schaefer and J. Wambach Phys.Rev. D75 (2007) 085015

- •Lattice QCD calculations predict a first order phase transition seen, as a discontinuity in the density.
- •First order phase transition is characterized by unstable coexistence region. This spinodal region will have the lowest compressibility
- v_1 is a manifestation of early pressure in the system
- •We see a minimum of the v_1 signal between 11.5 and 19.6 GeV \rightarrow New data are needed at 15 GeV

Azimuthally Sensitive HBT - BES Results

- •Initial eccentricity defined by overlap.
- •A softening of the equation of state would change the spatial expansion of the system.
- •This would be seen in $\varepsilon_{\rm F}$.
- •Checked suggestive CERES result
- •The expansion (reduction of ε_F) slows above 7.7 GeV.
- No minimum in ε_F is observed.

The E895 data are inconclusive

→ STAR data below 7.7 GeV are needed

Search for 1st Order P.T. below 7.7 GeV Fixed-Target

STAR Fixed-Target Run14 Goals

- •All Au_{Like}+Al data taken during BES were pile-up background events
- → We need to develop a dedicated fixed-target trigger, however the test run request becomes irrelevant if RHIC runs 15GeV Au+Au before running 200 GeV Au+Au.
- •It is likely/possible that in the beam halo events studied in the BES data sets the projectile nucleus is a heavy projectile fragment from an upstream beam-gas nuclear interaction
- → We request a test to intentionally steer the beams to graze the target to create known Au+Au events.
- → We will need the target to be designed, fabricated, and installed during this summer shutdown.

Physics goals for Run14 Au+Au at 4.0 GeV:

- Elliptic flow of identified π^+ , π^- , and p
- Directed flow of protons
- Azimuthally sensitive HBT of pions

These are out key 1st Order Phase Transition signatures

Search for the Critical Point

Ratio Fluctuations – BES Result

- Naively, fluctuations are expected at the critical point
- •STAR data show no significant energy dependence for K/π fluctuations
- \bullet Smooth evolution with energy for p/π and K/p fluctuations
- No non-monotonic behavior is observed
- **→** We need a more sensitive observable

Higher Moments – Net Proton Skew/Kurtosis - BES

- Third (Skew) and Fourth (Kurtosis) moments are increasingly sensitive to fluctuations expected at a critical point.
- Ratios of cumulants allow volume terms to cancel
- STAR data are similar to Poisson baseline at energies above 27 GeV.
- Deviations are seen at low energies.
- Signal size will be affected by finite size
- The gap between 11.5 and 19.6 is large, might miss the critical point
- → Need data at 15 GeV

Additionally

- → Need detailed theory with finite systems
- → More data are needed → BESII

Conclusions

1. Turn-off of QGP signatures:

- NCQ scaling breaks down below 19.6 GeV
- High p_t suppression not seen below 19.6 GeV
- LPV effect not seen below 11.5 GeV
- → The onset of deconfinement is below 11.5 Gev

2. Evidence of the first order phase transition.

- Inflection in v_2 at 7.7 GeV
- v_1 slope (dv_1/dy) double sign change, minimum near 15 GeV
- Azimuthal HBT interpretation is challenging
- → Need more data near 15 GeV and below 7.7 GeV

3. Search for the critical point.

- Measurements of K/π , K/p, or p/π fluctuations
- Measurements of Higher moments of the net-proton and charge
- → An Beam Energy Scan survey point is needed at 15 GeV
- → These are challenging analyses, more data/theory → BESII

Backup

High p_T Suppression: BES Results

- R_{CP} of strange particles at 39 and 27 GeV show a similar trend as that in higher energies.
- 19.6 shows intermediate behavior
- At 11.5 and 7.7 GeV, all particles R_{CP} are larger than 1 at intermediate p_T .

High p_T Suppression: BES Results

• High p_T suppression seen at 27 GeV and above

E. Sangaline QM2012

- •19.6 shows intermediate behavior
- At 11.5 and 7.7 GeV, all particles R_{CP} are larger than 1 at intermediate p_T .

Higher Moments – Net Charge Skew/Kurtosis - BES

- Data are consistent Poisson baseline at highest energy.
- Deviations from Poisson at low energy.
- **→** More theory is needed
- → More data are needed

